(Following Paper ID and Roll No. to be filled in your Answer Book)											
PAPER ID:	131852	Roll No.					-				
L								-			

B.Tech.

(SEM. VIII) THEORY EXAMINATION 2013-14 DIGITAL SYSTEM DESIGN USING VHDL

Time: 3 Hours

Total Marks: 100

Note: - Attempt all questions. All questions carry equal marks.

- 1. Attempt any four parts:
 - (a) Differentiate between Combinational and Sequential Logic Circuits.
 - (b) Write the applications and advantages of VHDL.
 - (c) Write the syntax of declaration of an entity. Find error if any rectify the following:

entity abc is

port (x; y: in std_logic;

z, and : out std_logic);

end abc

- (d) Write the operators in VHDL. Explain them in short.
- (e) Compare structural and behavioral style of modelling.
- (f) Compare variables and signals in VHDL.

2. Attempt any four parts:

- (a) Write a VHDL code for full-adder using behavioural style of modelling.
- (b) Write a VHDL code for 4:2 encoder with enable using structural style of modelling.
- (c) Describe RTL design flow.
- (d) What are different abstraction levels of a digital system design?
- (e) What are generic parameters? Explain with examples.
- (f) What are Binding Alternatives?

3. Attempt any two parts:

- (a) Write a VHDL code for 3:8 decoder.
- (b) Write a VHDL code for 1:8 De-Mux.
- (c) What is Guarded Signal Assignment? Explain with example.

4. Attempt any two parts:

- (a) Compare inertial delay mechanism and transport delay mechanism. Explain Delta Delay.
- (b) What are Multiple concurrent drivers? Explain different resolving methods.
- (c) Write a positive EDGE triggered SR Flip Flop design in VHDL.

5. Attempt any two parts:

- (a) Write a generic unconstrained n to 2ⁿ decoder. Use std_logic. The decoder has an active low. Enable I/P, AN n BIT input and A 2ⁿ output. The data inputs and the outputs are active high. When initiated, this decoder expands to its required size.
- (b) Write a Push-Pop stack model using the VHDL access type. Push is done after a clock pulse, and pop is done first and then clocked. Use the access type so that the stack can be made with no limit. Data on the stack is a record of an 8-bit bit_vector and a time field. The stack has a clock input, but you will only be mimicking the clocking since the access type does not require a clock.
- (c) What do you mean by testing? What are different issues related to design test?